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Advanced Biomedical Computing Center

• Web: 
http://www.abcc.
ncifcrf.gov

• Scientific 
Applications 
Page 

• New Account
• Contacting the 

Help Desk 
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Overview
• Basics of Homology Modeling
• Hands-on exercise

– Homology Modeling using InsightII
• What I will not talk about!

– Alternatives to Comparative (homology) modeling
– Basics of protein structure (primary, secondary…)
– Theory behind sequence alignment (pair-wise and 

Multiple) and scoring matrices
– Theory behind InsightII (homology) modules
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Overview of Homology            
ModelingRaw Sequence

3D-Structure
Accelrys: Homology

Comparative Modeling

Knowledge-Based

X-ray, NMR, e-Diffraction

Physicochemical 

Simulations

Experiments

Modeling
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1STP1STP

Chunk From 1WSA
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Secondary 
Structure (& 
loop)
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Structure
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All Alpha: 2mm1
Myoglobin Mutant 

All Beta: 1bww_b
BENCE-JONES 
IMMUNOGLOBULIN REI 
VARIABLE PORTION

Alpha+Beta: 1luc_b
Bacterial Luciferace

α/β(mainly parallel β
with intervening α
sheets

α + β (segregated α
& anti-parallel β)

Multi-domain (α & β )
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Why Homology Modeling?
• Rate of structure solving through NMR 

or X-ray is slow compared to the 
deposition of DNA and Protein 
sequences

• Crystallization is the bottle-neck (time in 
months). No generic recipe for 
crystallization 

– UniProtKB/SP as of 06/01/06 
222,289 entries

• (Release 42.4 had 138,347 entries 
11-14-03)

– PDB as of 05/30/06 has 36,837 
structures

• 23,188 (11/11/03)
• 28,110 (05/10/05)

NCBI

RCSB/PDB
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Why Homology Modeling?

• Membrane proteins are difficult to crystallize
– 30% of proteome of living things

• Knowledge of 3D structure is essential for the 
understanding of the protein function
– 3D structure shows us far apart AAs can be closer in 

the structure
• Structural information enhances our 

understanding of protein-protein or protein-DNA 
interactions
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Applications of Homology Modeling

• Potassium Channel 
proteins

• Trans-membrane 
region-no 3D structure 
available

• Used Homology 
Modeling to build a 
model for the channel 
protein

• Used QSAR to model 
the binding of inhibitors 

• Docking to study the 
drug-receptor 
interaction 

K.Jozwiak, S. Ravichandran, J.R. Collins and I.W.. Wainer, J. Med. 
Chem, Jul 29, 47:16 4008-4021, 2004
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Homologous Proteins
• Homologous Proteins (Orthologous: Same Function on different 

species or Paralogous: Related but different function on same 
species):
– “Having a common evolutionary origin”

• Evolved (mutations etc.) evolutionarily from a common ancestor
• Many of the essential proteins (key regulators) present in humans 

are also present in other living organisms (eg. Rat, bacteria )

• These essential proteins have to conserve their functionality 
throughout evolution
– DNA polymerases 

• DNA replication
– Necessary for all organisms

– MHC Major Histocompatibility Complex
• Antigen presentation to trigger an immune response 

– Present in higher Eukaryotes, rats and humans

How to identify homologous proteins?  Can we exploit 
sequence information?
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Homologous Proteins

• Orthologous (different 
Species)
– ortho (exact)
– Result of speciation
– Example:
– Carrier Proteins 

(Lipocalin)-Transport 
Vitamin A in Serum

• RBP Gene (human)
• RBP Gene (Rat)

• Paralogous (same 
Species)
– para(parallel)
– Result of Gene 

Duplication
– Example:

• alpha,beta hemoglobins
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Homology and Convergence
• Homologous proteins: Proteins that are related 

by divergence (not convergence) from a 
common ancestor
– Convergence (nature reinvented them for different 

purposes)
– Similar Fold (analogues) but no significant sequence 

similarity (same fold, different function, ancestrol
origin unknown)

• β-barrel (Soluble serine proteases and integral membrane 
porins) [can be the result of stable architecture ]

– Share catalytic site (analogues) but no 
sequence/structure similarity 

• His-Asp-Ser triads seen in Subtilisin (αβα sandwich) and 
Chymotrypsinogen (2 domain β-barrel)
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Protein Families and their evolution-A structural 
perspective, C.A. Orengo and J.M. Thornton, 
Annu. Rev. Biochem, 2005, 74, 867-900
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Sequence Dissimilarity & Structural 
Similarity

What we already know about homologous proteins
• Core region is pretty much conserved (main secondary 

structural features)
• Most dissimilarity is observed in the surface (loop) 

regions
• Within homologous proteins secondary-structures can 

move relative to each other or even disappear but 
neither order nor orientation will differ (α becoming β
etc.)

• Sequence similarity is less conserved compared to 
Structural similarity
– Far diverged proteins has very little sequence similarity
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1og5_B

1nr6

Science, 15:808 Nayeem et al, 
Protein (2006)

76% identity 
RMSD 1.4 Ang

CYP 450 (All Alpha)

Structural Overlay done 
using DeepView

ClustalW 1.83
www.ebi.ac.uk
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Comparing Homologous enzymes
Family:Ubiquitin Conjugating enzyme
1QCQ: Arabidopsis Thaliana 2AAK: Baker’s Yeast 

Sequence Identity 43%

Russell et al, JMB, 269, 423-439 1997
Using PredictProtein

Topological Similarity
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1blx 1ckp

Nayeem et al, Protein Science, 15:808 (2006)

42% identity 
RMSD 1.8 Ang

Cyclin Dependent 
Kinase (Alpha + Beta)

Structural Overlay done 
using DeepView



06/14/06 S. Ravichandran, Ph.D., ABCC, 
NCI-Frederick

19

1P8D

Nayeem et al, Protein Science, 15:808 (2006)

38% identity 
RMSD 1.3 Ang

Nuclear Hormone 
Receptor (All Alpha)

Structural Overlay done 
using DeepView

2LBD
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1A27

Nayeem et al, Protein Science, 15:808 (2006)

19% identity 
RMSD 
1.7 Ang

Short Chain 
Dehydrogenase
(Alpha + Beta)

Structural Overlay done 
using DeepView 1CYD_C

ClustalW 1.83
www.ebi.ac.uk
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Sequence Dissimilarity & Structural 
Similarity

Doolittle’s Rule of thumb: 
• Sequences longer than 100 aa and has more 

than 
• 25% identity (with appropriate gaps): Very likely related
• 15-25% identity: May still be related
• < 15% probably not

– How do we make sure that the alignment in the <15% (twilight 
zone) is biologically meaningful

» Random Shuffling-Random mutations and comparison with 
original score to make sure that the alignment is not 
random
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Homology Modeling: Terminology 
& Basic Assumptions

Terminology:
• Protein sequence we are modeling is called the 

Target
• Homologous protein used in the modeling is 

called the Template
Basic Assumptions

• Similar sequences have similar conformations
• Core regions provide excellent template for modeling the 

target protein. If the Core regions share 50% identity, 
then the two proteins can almost always be 
superimposed with an Root Mean Squared Deviation 
of 1 Å or less 
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3D Structure Database

• PDB (Future formats mmCIF and ASN.1 
(MMDB))
– Brookhaven National Laboratories
– Research Collaboratory for Structural Bioinformatics 

(RCSB)-Collaborative effort NIST, Rutgers and San 
Diego Super Computing Facility

• http://www.rcsb.org

– Publically available 3-D structures of Proteins, 
Proteins + Nucleic Acids (DNA), Proteins complexed
with metals and inhibitor

– Experimental methods: X-ray and NMR 
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• NMR (eary 1960s)
– Dynamic 

• Multiple Models (Each 
conformation is a 
model)

– Aqueous environment
– Limitations

• Size of molecule
– < 30kD

• Examples
– 1DV0, 1UBA

3D-Structural Database of 
biomolecules (PDB)
http://www.rcsb.org

• X-ray (1958)
– Static 

• Only one model

– Crystal 
– Limitations

• Not limited by size 

• Examples
– 7LYZ , 2SRC

PDB: 50 
structures

(1975)

NMR: 3776
X-ray: 24334
Total: 28110

May 10, 2005

NMR: 5409
X-ray: 31223

e- micros: 125
Total: 36837

Jun 01, 2006
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Anatomy of PDB file
ATOM      1  N   MET B   1      52.127  -7.410  40.963  1.00 52.97
ATOM      2  CA  MET B   1      51.096  -6.600  40.340  1.00 52.20
ATOM      3  C   MET B   1      51.305  -6.416  38.831  1.00 51.74
ATOM      4  O   MET B   1      52.405  -6.086  38.379  1.00 50.94
ATOM      5  CB  MET B   1      51.012  -5.245  41.044  1.00 52.27
ATOM      6  CG  MET B   1      50.777  -5.353  42.542  1.00 50.84
ATOM      7  SD  MET B   1      49.355  -6.390  42.934  1.00 51.51
ATOM      8  CE  MET B   1      48.078  -5.169  43.363  1.00 47.75
ATOM      9  OXT MET B   1      50.932  -9.312  40.816  1.00 53.41
ATOM     11  N   ASN B   2      50.235  -6.630  38.064  1.00 50.80
ATOM     12  CA  ASN B   2      50.271  -6.496  36.613  1.00 49.26
ATOM     13  C   ASN B   2      50.332  -5.038  36.246  1.00 48.37
ATOM     14  O   ASN B   2      50.120  -4.673  35.089  1.00 50.24
ATOM     15  CB  ASN B   2      49.016  -7.074  35.977  1.00 49.62
ATOM     16  CG  ASN B   2      48.753  -8.479  36.395  1.00 51.39
ATOM     17  OD1 ASN B   2      49.628  -9.339  36.316  1.00 51.26
ATOM     18  ND2 ASN B   2      47.531  -8.701  36.861  1.00 54.69
...........
HETATM 2462 ZN    ZN 909      45.731   9.445  45.851  0.54 77.21
HETATM 2463  C1  RET B 978      33.234   8.591  25.798  1.00 34.05
HETATM 2464  C2  RET B 978      31.995   8.387  24.968  1.00 33.95
HETATM 2465  C3  RET B 978      32.242   8.645  23.513  1.00 33.45
HETATM 2466  C4  RET B 978      32.720  10.104  23.258  1.00 33.69
HETATM 2467  C5  RET B 978      33.717  10.591  24.302  1.00 34.43
HETATM 2468  C6  RET B 978      33.938   9.900  25.443  1.00 34.95
HETATM 2469  C7  RET B 978      34.915  10.362  26.451  1.00 36.11

Residue
Residue 

#

X       Y        Z
Chain 

ID

Occ

Temp 
Factor

Atom #

Only portion of 
the file is shown
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PDB
• X-ray structures do not include H-atoms (ex 

1qpc)
– Careful about acidic/basic residues, Water (only 

oxygen atoms) 
• Resolution

– Smaller the better (1.5Å is better than 2.5Å)
• As a result of proteolytic activity some 

information about structure could be lost 
– Flexible loops etc.

• Some proteins/enzymes fulfill their function only 
as dimers or trimers
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Database mining
• Why Sequence Comparison?
• Template sequences:

Global Alignment
– Overall alignment

sequence homologs
with known 3-D str. 

• Sequences of both template 
& target: Local Alignment
– Best for searching 

local domains
• Gaps cannot be introduced endlessly

– Biologically meaningless

GA_CGGATTAG
GATCGGAATAG

Local Alignment
Smith-Waterman

Global Alignment
Needleman-Wunsch
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Scoring Schemes
• Scheme based on Identity
• ” based on Chemical Similarity 
• ” based on Genetic Code
• ” based on Observed Mutations
Example of Identity Scoring Scheme

Sequence 1  GACGGATTAG;  Sequence 2 GATCGGAATAG
Total Score
9X1+1X(-1)+1X(-2) = 6

Dynamic Programming

Global alignment     

G A - C G G A T T A G
G A T C G G A A T A G
1 1 -2 1 1 1 1 -1 1 1 1
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PAM & BLOSUM Matrices
• PAM (Dayhoff et al 1988)

– PAM1 is the matrix obtained 
by comparing sequences differ 
by no more than 1% 

– Higher PAMX are extrapolated 
from PAM1)

– PAM250: Observed 
difference(80%) Evolutionary 
distance (250)

• Limitation: Matrices are 
derived from alignments of 
sequence that are 85% identity
– Difficult to use in Twilight Zone

• Blosum (BLOcks SUbstitution Matrix) 
Heinkoff & Heinkoff (1992)
– Derived from BLOCKS 

database
– Distant relationships explained 

better than PAM
– Blosum62 obtained from 

sequence BLOCKS clustered 
at >= 62% identity (default 
Blast)

– BlosumX are observed from 
actual alignments not 
extrapolated

– Sequences are very similar 
use higher Blosum (low PAM)

NCBI 
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BLOSUM64

S(a,b) = 1/λ log(pab/fafb)

20 x 20 matrix 
log-odd Score values

pab Prob. of a & b aligned (correlated)
fafb How the two residues are uncorrelated
What is the probability of observing ab in 
comparison to chance ?
λ Scaling factor

W/W +11

pab = 0.0065
fa = 0.013, λ = 0.347

S(a,b) = λ(0.0065/0.013*0.013)
= +10.5

L/L = +4.0 

pab = 0.0371
fa = 0.099 λ = 0.347

λ(0.0371/0.099*0.099) = +3.8

∑fafbe λS(a,b) = 1 
a,b

Sean R. Eddy, Many 
References

MSA

Calculation of λ
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PAM250 Matrix (mutation values) 
(identities at 20% level)

Ala Arg Asn Asp Cys Gln Glu Gly His Ile .
Ala 2 -2 0 0 -2 0 0 1 -1 -1

Arg -2 6 0 -1 -4 1 -1 -3 2 -2

Asn 0 0 2 2 -4 1 1 0 2 -2

Asp 0 -1 2 4 -5 2 3 1 1 -2

Cys -2 -4 -4 -5 12 -5 -5 -3 -3 -2

Gln 0 1 1 2 -5 4 2 -1 3 -2

Glu 0 -1 1 3 -5 2 4 0 1 -2

Gly 1 -3 0 1 -3 -1 0 5 -2 -3

His -1 2 2 1 -3 3 1 -2 6 -2

Ile -1 -2 -2 -2 -2 -2 -2 -3 -2 5

.

A          C G T

A 1
0  

0  0

C 0   
1

0 0

G 0
0          

1 0

T 0 0 1

Unitary Matrix

Cystein: Well-known for S-S linkage 
Important for structure
Tryptophan : Highly conserved-
Hydrophobic core residue-Important 
for the structure-difficult to mutate.
Trp->Phe, Trp->Tyr (aromatic acids are 
the next choice to replace Trp)
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Searching for Templates
• Do a Blast/Psi-Blast/Fasta or use programs within GCG 

(Align, gap, bestfit, etc.) for sequence alignment & 
Family identification. 
– Proteins(Blast); DNA(FASTA)
– Restrict search only to PDB database

why PDB? 
• Potentially suitable templates

– Blast Score < 0.001 (protein), 
<=10^(-6) (nucleotide) 

– Safe threshold is > 25-30% identity
– In the Twilight Zone (< 25%) How to 

proceed?
• Randomization of sequences and realignment

BLOSUM62:
Based on 62% 
identity

Merge all 
aligining
sequences have 
62% or more into 
one block. For 
sequences less 
than 62% 
identities are 
weighted more 
heavily

Pearson
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• Usually more than one protein is chosen 
as templates? 
– Avoid biasing, to model variants (loops etc), 

side chain 
conformations

– Final model will be done using one 
representative 
template (called reference) 
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Structurally Conserved Region 
(SCR) Modeling

• After identifying template(s), the next task is to identify 
the SCR

• What are SCRs? 
– Inner core (not the surface exposed loops)
– How do we identify them? 

• Multiple structure Alignments, secondary structure elements

• Assigning SCR within the family of homologous proteins
– Align them based on their backbone using Least-square fitting 

methods
• Optimizing the alignment using matching points from the conserved 

secondary structural elements
– At this point you should see the structures are aligned in the secondary 

structural areas and non-conservation in the surface loops etc.
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SCRs

• What happens when we have only one 
template?
– Use the secondary structure information given 

in the protein
• Residues involved in Salt-bridges, H-bonds, di-

sulphide bonds etc. are conserved in a protein 
family

– Residues involved in active site

– Use Theoretical methods to predict 
• Multiple Sequence Alignments
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Made with JPRED Server

Multiple Sequence Alignment & 
Secondary Structure Prediction

Query: IFN-Gamma  Chicken Seq.
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Made with JPRED Server

Multiple Sequence Alignment & 
Secondary Structure Prediction

Query: IFN-Gamma  Chicken Seq.

Hydrophobic-
Boxed
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SCRs

• The next step is to align the Structurally aligned 
templates with the unknown sequence

• What is known?
– SCRs also show strong sequence homology

• Loop regions of aligned sequences also show high similarity 
but structurally variant 

– No gaps are allowed within the SCR regions
• Special sequence alignment algorithm used which 

discourages gaps within SCR
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Structurally Variable Region (SVR) 
Modeling (3 methods)

• If the reference protein has similar loops then it can be 
copied

• Perform a database (derived from PDB) search for 
structures with loops
– Criterion is the conserved residues flanking the loop area and 

the # of loop residues
• Software usually keep a loop database derived from PDB. 

• de novo method of building and constrained minimization 
– If the number of residues in the template and the reference differ

• MM calculations carried out as the last step to relieve 
steric clashes 
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Modeling Side Chains
• Given that each side chain can be in one of 

many different conformations—Multiple minima 
problem

• Following options are generally used:
– If the residues are same/similar

• Copy the same conformation (why?—scoring matrix scores)
– If they are different 

• Use built-in libraries based on known info (PDB)
• Random conformations without any collisions

• Residues in the border (SCR,SVR) have to be 
dealt carefully
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Overview of Homology Modeling
Query 

Protein Sequence

BlastP

No PDB 
homologue

2 or More PDB 
homologue

1 PDB 
homologue

SCR of the PDB 
Homologues are 

Determined by Structural 
Alignment

Structure using 
Threading 

Sequence Homology

Structure using Motif 
Relationships

Sequence Alignment
Of Query and the
PDB homologue

Copy Atomic Coordinates 
From the closest 
Homologue SCR
Sequence to the 

Query protein

Bioinformatics Basics:
Rashidi & Buehler
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Homology Modeling By 
Example

Homology Module of InsightII
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Template Alignment

• 5 template lysozyme
proteins (only α-C 
shown) structurally 
uncorrected multiple 
sequence alignment

• Reference Red
• Query Sequence violet
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Studying the corrected template 
alignment

• Look at cys

How about the
Structural Cons-
veration?

• Which regions show
structural variation? 
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Structurally corrected MSA

Do you see 
the location of 
the variable 
region (core or 
surface)

Made using InsightII, Accelrys

RMS deviation is kept minimum (< 1 Angs.) 
Structurally corrected MSA
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Target Core Modeling

• Target sequence is aligned with the 
template or Structurally Corrected Multiple 
Sequence alignment (in case of templates)
– Which residues can be aligned to the 

conserved block region of the multiple 
sequence alignment of the reference protein 
so that one can copy the coordinates from the 
reference to the sequence

• Do a sequence alignment using a chosen matrix, 
gap penalty etc. of the reference with the model 
sequence
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Target Core Modeling

• Target sequence is now aligned with the 
template or Structurally Corrected Multiple 
Sequence alignment (in case of templates)

Made using InsightII, Accelrys

Alignments will be carried out between SCRs. Special 
algorithms (not Needleman-Wunsch) can treat each 
SCR. 
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Sequence Alignment

Made using InsightII, Accelrys

Before Aligning the model sequence to the template

After Aligning the model sequence to the template 

Are these insertions 
reasonable?

Gap insertion, conserved 
region split

Gap insertion
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Suspect the alignment
• Look at the alignment and if the gaps introduced are not 

in the surface exposed then go examine the parameters 
of the alignment (gap-penalty etc.)

• If the deletions occur at the end-terminus, surface 
exposed, not in any recognized secondary structure, 
then they may be valid deletions

• Finally, copy the coordinates from each conserved group 
of one of the most similar sequence template (based on 
phylogeny) to the model sequence.
– Other alternative is “Distance Geometry” approach
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Query matrix Gap 
length             Costs

(Exis, Exten)

<35 PAM-30 ( 9,1) 
35-50 PAM-70 (10,1) 
50-85 BLOSUM-80 (10,1)
>85    BLOSUM-62 (11,1)

http://mcb.berkeley.edu/labs/king/
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1

2

3

1) Before alignment 2) wrong alignment parameters 3) correct alignment
parameters (higher gap penalty)
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Loop Modeling
What do we know now?

Loop regions do not have random strs.

It depends on 

• aas in the loop

•Type of Sec Str elts it connects

• α-α, β-β, α – β

• Loop database can be built (PDB) 
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Side Chains will be added 
if the template has 
identical residues

Rotamers will be 
generated which doesn’t 
clash with the backbone
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Final Model
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Homology Model Evaluation

• Most automated Homology Modeling 
software provides a model, even with an 
inappropriate template

• How to judge the quality of the model?
– Absence of R-factors-No way to evaluate the 

model
– Correct models usually have atomic positions 

within the experimental uncertainty limit
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Final Step: Energy Minimization
• Why? The final model now has backbone+side-

chains+loops generated from the template(s)
– Has atom clashes and non-optimal conformations

• Choose a program to perform Energy 
Minimization to repair the model structure (bad 
contacts)
– Suitable Force-Fields-GROMOS, CVFF, GROMOS, 

CHARMm etc. 
• Swiss-Model uses GROMOS

• How many steps of Minimization ?
– Vacuum (non-solvent)-minimum number of steps
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Identifying Incorrect Models

• Hydrophobic residues exposed
• Buried polar or ionic residues without the 

charges satisfied (H-bonds, salt-bridge 
etc)

• Clashes
• Unusual bond-lengths, bond-angles 
• Sequence alignment is not-optimal
• Very large RMSD among the templates
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Quality of Models

• Procheck: Stereo-chemical quality of the 
protein and residue by residue analysis in 
figures 
http://www.biochem.ucl.ac.uk/~roman/procheck/procheck.html

• PDBREPORT: http://www.cmbi.kun.nl/gv/pdbreport
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Ramachandran Plot

β Sheet

RH α-helix

LH α-helix
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Quality of Models
• Stereochemical Accuracy

– Choice of  template(s) (low resolution etc.), bond-
lengths, bond-angles, torsion angles, chirality of C-
alpha atoms, planarity of amide bonds

• Packing Quality
– How secondary structural elements packed together 

(α-α,β-β, α-β etc.)
• Inspecting buried residues

• Folding Reliability
– Comparing overall fold of template and model

• 3D-profiles-reduce 3D structure to 1D string. This 1D string 
can then be compared with query sequence after some 
modification
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CASP: Test 
of the Models

• Critical Assessment of Techniques for 
Protein Structure  

http://predictioncenter.org/
– Showcase for the latest methods in the 

structure prediction area
– Once in two years
– Competition open in three areas 

• Homology Modeling, Threading and ab-initio
– CASP (1998, 2000, 2002 & 2004) showed the 

reliability of Homology Modeling when suitable 
templates
are available (>30%, above Twilight Zone)

CASP6 [2004]
Proteins: 
Structure, 

Function, and 
Bioinformatics

Volume 61, 
Issue S7 , 

Pages 225 - 236
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Database of Homology Models

• Project, 3D-Crunch (1984)
– Project submitted all sequences of Swiss-Prot 

and trEMBL to SWISS MODEL server
• The resulting homology models (64,000) 

are stored and available to public from 
SWISS-MODEL Repository
– Database contains: Final models, Entire 

modeling projects including aligned 
coordinates of templates 
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Database of Homology Models

• ModBase Sali and co-workers
– Software: Modeller
– Models were built based on spatial restraints

• Restraints: distances between alpha carbons, 
distances within main-chain etc

– E-minimization techniques are employed to 
obtain these restraints
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Meta-Servers

http://cubic.bioc.columbia.edu/meta/

http://bioinfo.pl/meta/
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Meta-Servers http://cubic.bioc.columbia.edu/meta/
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http://cubic.bioc.columbia.edu/eva/index.html

PDB-CAFASP: Pre-release PDB entries

CAFASP3: Evaluation of fully automated 
Servers
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Homology Modeling software in 
ABCC

Commercial Software: $$$$$
• Tripos: Composer, Match-maker, 

GeneFold (not a HM software)
• Accelrys: Homology, Modeller, GCG

Free Software:
• SWISS-MODEL, GeneMine etc. 
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Other software 

• SwissModel
• LOOK (Free software) 
• ProFit
• Modeller $$$  
• Prime (Schrodinger) $$$ 
• Sybyl $$$ 
• ICM $$$   
• MOE $$$
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Some selected recent publications
• Sequence comparison and protein structure prediction Roland L Dunbrack

Jr. Cur. Opin. Str. Biol, 2006, 16:374
• A Comparative Study of Available Software for high-accuracy homology 

modeling: From sequence alignments to structural models, Akbar Nayeem
et al, Protein Science, 2006 15:808

• Protein Families and their evolution-A structural perspective, C.A. Orengo
and J.M. Thornton, Annu. Rev. Biochem, 2005, 74, 867-900

• Servers for protein structure prediction, D. Fischer, Curr Opin. Str. Biology, 
2006, 16:179

• In Quest of an empirical potential for protein structure prediction, J. 
Skolnick, Curr. Opin Str. Biology, 2006, 16:166 

• Comparative modeling for protein structure prediction, Krzysztof Ginalski, 
Cur. Opin Str. Biology, 2006, 16:172-177

• Sequence Similarity, talk by Prof. W.R. Pearson, 2006
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Some selected recent publications
• Predicting protein function from sequence and structural data, J.D. Watson, 

R.A. Laskowski and J.M. Thornton, Cur. Opin Strl. Biology, 2005, 15:275-
284 

• Application and Limitations of X-ray crystallographic Data in Structure-
based Ligand and Drug Design, Andrew M. Davis, Simon J Teague and 
Gerard J. Kleywegt, Angew. Chem. Int. Ed 2003, 42, 2718-2736 

• Where did the BLOSUM62 alignment score matrix come from? Sean R.
Eddy, Nature Biotechnology, 2004, 22(8) 1035-1036.

• From protein structure to biochemical function? R.A. Laskowski, J.D. 
Watson and J.M. Thornton, J Str and Funct. Genomics, 2003 4:167

• Sequence and Structure differences between enzyme and nonenzyme
homologs, A.E. Todd, C.A. Orango and J.M. Thornton, Structure, 2002, 
10:1435-1451

• Validation of protein crystal structures, G. J. Kleywegt, Acta
Crystallographica Sec D, 2000, D56, 249
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Reference

• Visit the web-site

http://ncisgi.ncifcrf.gov/~ravichas/HomMod/ 
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